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Induced gap solitons of a Korteweg–de Vries system
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We consider a KdV system where a periodic cnoidal wave is initially excited. It is found that envelope
solitons can be formed by perturbation modes, which build up on the periodic wave and move relative to it.
The mechanism is similar to that of the so-called gap soliton, where the existing cnoidal wave plays the role of
a periodic structure.@S1063-651X~98!10912-1#

PACS number~s!: 03.40.Kf
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I. INTRODUCTION

In recent years nonlinear wave propagation through in
mogeneous media has attracted considerable attention@1,2#.
One of the simplest and physically relevant models of
inhomogeneous continuous medium is that with perio
variations on its parameters. In these systems, a new typ
nonlinear excitations, so-called gap solitons, discovered
1987 by Chen and Mill@1#, can be built up due to the coop
eration between two factors: periodicity of the paramet
and nonlinearity of the system. Periodicity of the system
rameter is induced, for example, by a periodic change of
linear refractive index in optical waveguide or fibers with
Kerr-type nonlinearity. Gap solitons may also exist as loc
ized structures in nonlinear discrete periodic media, such
diatomic chain@3#. The common feature of gap solitons
the models mentioned above is: a wave lying in a gap of
linear spectrum will be reflected strongly, but spatially loc
ized modes may appear when the nonlinearity is conside
The more physical explanation for the existence of gap s
tons is: periodic variation of the parameter supplies a fe
back mechanism@4#, and then there are two counterprop
gating waves in the system. When the nonlinearity
considered, these waves are coupled and nonlinear excit
can emerge in certain cases. Therefore, the difference
tween gap solitons and usual solitons lies in the fact that
appearance of the former requires periodic variation of
parameter.

In a coupled Korteweg–de Vries~KdV! wave system@6#,
there is no prerequisite periodic structure, but the gap s
tons can also be found. In fact, the necessary periodic po
tial for one subsystem is provided by the other because
weak linear coupling between the two subsystems, wh
opens a narrow gap in the linear spectrum. A similar p
nomenon has also been observed in a system with only
equation. For example, in Ref.@9# with a driven/damped
nonlinear drift wave equation, the gap solitary wave is n
merically found to be trapped by a steady wave solution
this case, the steady wave solution plays the role of a p
odic background. In the present work, we analytically d
cuss such phenomena occurring in a conservative sys
here KdV equation as an example.

As is well known, the KdV equation allows for a period
cnoidal wave solution. Supposing that initially such a cnoi
wave already exists, it is then interesting to know what k
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of effect it will have on the system. If there is no prerequis
periodic wave, the linear dispersion of the normal KdV equ
tion tells us that the system allows for a unique propagat
direction for harmonic perturbation waves. However, t
situation will be changed when there already exists a p
odic solution, e.g., a cnoidal wave. In this case, one
examine the dispersive relation and find that the system
lows for two counterpropagating waves moving relative
the existing cnoidal wave. The reason is that the perturba
waves can be scattered by the periodic wave as if the latt
a periodic potential. In the present paper we will show th
the nonlinearity can cause the two counterpropagating wa
to be coupled and an envelope soliton can be formed.
call it an induced gap soliton in the sense that it is fu
supported by the background cnoidal wave and it beha
just like the gap solitons appearing in a periodic medium

We consider the case in which the amplitude of the ba
ground cnoidal wave is small. The dispersion of our syst
is discussed in Sec. II. In Sec. III, by using the asympto
expansion technique~see Ref.@5#!, the induced gap solitons
are found. Finally, Sec. IV includes the conclusions and d
cussions.

II. DISPERSION

We consider the KdV equation

w t2wxxx2wwx50, ~1!

where the subscriptsx,t denote the derivations with respe
to space and time variables, respectively. It is well kno
that this equation has a periodic cnoidal wave solution

w0~x2vt !5A sin2~x2vtup!

5A01 (
n51

`

Ancos@2nG~x2vt !#[A01w̃,

~2!

where p is the modulus,A5212q, v5414q, q[p2,
A05212(12E/K), An512p2n/@K2sinh(npK8/K)#, K, K8,
E are the complete elliptic integrals, andG5p/2K(p). This
solution is periodic and its period is 2K(p), when p→0,
K(p)→p/2, K8→`; whenp→1, K(p)→`, K8→p/2. As-
suming that such a periodic solutionw0 has been excited in
7974 © 1998 The American Physical Society
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our system, we setw(x,t)5w0(x2vt)1c(x,t) and then get
an equation for the perturbation wavec,

c t2cxxx2~w0c!x2ccx50.

If w0→0, the above equation is the KdV system, and
linear dispersive relation isv52k3 or v/k52k2,0. It
tells us that the KdV system allows for a unique propagat
direction, here the negativex direction. A finite excitation
w0(x), however, dramatically changes the dispersion of t
system. Sincew0(x2vt) moves with a velocityv, we trans-
form the reference frame tox85x2vt, t85t. Then for the
perturbation waves moving relative tow0 , the latter is felt as
a periodic potential and will scatter those perturbation wav
As a result, two counter propagation directions are allow
for the harmonic waves ofc. It is those counterpropagatin
perturbation waves moving relative to the periodic poten
w0 that can form localized structures. These structures
different from the usual KdV solitons, and can be call
induced gap solitons as explained in the following.

Omitting the prime989 in the reference frame (x8, t8),
one obtains

c t2cxxx2 ṽcx2~ w̃c!x2ccx50, ~3!

whereṽ5v1A0 . First let us look for the nonlinear dispe
sion caused by the periodic potentialw0(x). For this pur-
pose, one sets the nonlinear term to zero, and expandsc(x,t)
into c(x,t)5(k*dvu(k,v)ei (vt2kx). Inserting it into Eq.
~3! brings us the following equation:

u~k,v!~v1k32vk!2 (
n50

`

1
2 f Ank

3@u~k12nG,v!1u~k22nG,v!#50, ~4!

wherek51, 2, . . . , `. The condition that the Jacobian d

terminant of the above equations equals zero gives the
persive relation ofc(x,t). Obviously, the system dispersio
is significantly influenced by the cnoidal wavew0(x). The
most important effect is thatu(k,v) is allowed to propagate
in both directions.

We consider the case in whichq is small, i.e.,q;e, e
being a small parameter. Whenq5p2 is small, E→p/2,
K→p/2, K8 is very large. So G;e0, uA0u;e, A1
→exp@2(pK8/K)#;e, and A2→exp@2(2pK8/K)#;e2. For
simplicity, we only consider the case where the wave nu
bers of the harmonics ofc equal halves of those of periodi
potentialw0 , i.e., nG. So we expand the wave fieldc into
two counter propagating modes. That is

c~x,t !5(
n

en@an
~1 !~x,t !einG~x2ct!1an

~2 !~x,t !e2 inG~x1ct!#

1c.c., ~5!

wherean
(1) represents the amplitude of the forward-movi

mode along the positivex direction, and an
(2) is the

backward-moving modes whenc.0. c.c. stands for complex
conjugation ande is the small parameter. We assume t
slowly varying envelope approximation; i.e., the amplitud
s

n
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d
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an are considered to be slowly varying inx and t or ]/]x
;e, ]/]t;e when operating onan . Substituting the expan
sion ~5! into Eq. ~3!, we obtain the following equations fo
a1

(1) anda1
(2) :

]a1
~1 !

]t
2d

]a1
~1 !

]x
2 i ~d11Gc!a1

~1 !2
A1

2
a1

~2 !~ iG !

2 1
2 a2

~1 !@a1
~1 !#* ~ iG !50, ~6a!

]a1
~2 !

]t
2d

]a1
~2 !

]x
1 i ~d12Gc!a1

~2 !1
A1

2
a1

~1 !~ iG !

1 1
2 a2

~2 !@a1
~2 !#* ~ iG !50, ~6b!

whered523G21 ṽ, andd152G31Gṽ. It is important to
note that in Eqs.~6a! and ~6b! nonlinear parts also involve
the amplitudes of the second harmonic, which after subst
tion are reduced in the lower order ofe to the simple alge-
braic relations

a2
~1 !52

@a1
~1 !#2

2~d21c!
, a2

~2 !52
@a1

~2 !#2

2~d22c!
, ~7!

where d2524G21 ṽ. Using Eqs.~7!, Eqs. ~6a! and ~6b!
change to

]a1
~1 !

]t
2d

]a1
~1 !

]x
2 i ~d11Gc!a1

~1 !2
A1

2
a1

~2 !~ iG !

1
1

4~d21c!
ua1

~1 !u2@a1
~1 !#~ iG !50, ~8a!

]a1
~2 !

]t
2d

]a1
~2 !

]x
1 i ~d12Gc!a1

~2 !1
A1

2
a1

~1 !~ iG !

2
1

4~d22c!
ua1

~2 !u2@a1
~2 !#~ iG !50. ~8b!

If the last nonlinear dispersive terms are neglected, nonz
solutions ofa1

(1) anda1
(2) require

c5@~d1 /G!22A1
2/4#1/2. ~9!

This gives the dispersive relation when initially a cnoid
wave exists. This dispersion can also be obtained from
~4! by omitting the second and higher Fourier component
w0(x). WhenA1→0, the linear dispersion of KdV equatio
is recovered. IfA1 is nonzero, those harmonic waves who
velocitiesc do not satisfy the relation~9! are forbidden by
the system. This dispersion produces a gap in the spect
However, one can see in the next section that the nonlin
ity causes the modes to be coupled to form localized str
tures. From this point of view, these localized structures
also be called gap solitons.
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III. INDUCED GAP SOLITONS

To look for solutions of nonlinear equations~8a! and~8b!,
we consider the envelopesa1

(1) , a1
(2) propagating with a

velocity w:

a1
~1 !~x,t !5U~x2wt!, a1

~2 !~x,t !5V~x2wt!. ~10!

After transforming to the moving coordinatesx85x2wt,
t85t, and inserting Eq.~10! into Eqs. ~8a! and ~8b!, we
obtain the following set of ordinary differential equations:

2~d1w!Ux82 i ~d11Gc!U1
iG

4~d21c!
uUu2U5 i

A1

2
GV,

~11a!

2~d1w!Vx81 i ~d12Gc!V2
iG

4~d22c!
uVu2V52 i

A1

2
GU.

~11b!

U,V are both complex functions. In the case ofc50,
Eq. ~11b! is conjugate to Eq.~11a!. Now we assume
U5u1 iv, V5u2 iv; then the equations foru, v are the
same as those describing the optical bright and dark
solitons in a diffractivex (2) medium@5# with periodic varia-
tion of refractive index. So the details are not listed he
However, the physics is different. In our case, the gap s
tons are induced, supported by the normal cnoidal wave
the KdV equation.

In the general case forcÞ0, we set

U~x8!5R1~x8!exp@ ia~x8!#, V~x8!5R2~x8!exp@ ib~x8!#,
~12!

whereR1 , R2 , a, andb are real functions. Exponential fac
tors in Eq.~12! and exp@inG(x2ct)# in Eq. ~5! constitute the
high-frequency part ofc(x). R1(x8), R2(x8) represent the
envelopes ofc(x). Substituting Eq.~12! into Eqs.~11a! and
~11b!, one gets four coupled equations forR1 , R2 , a, andb
as follows:

~d1w!R1x85
1
2 A1GR2sin~b2a!, ~13a!

~d1w!R2x85
1
2 A1GR1sin~b2a!, ~13b!

2~d1w!R1ax82~d11Gc!R11
G

4~d21c!
R1

3

5 1
2 A1GR2cos~b2a!, ~13c!

2~d1w!R2bx81~d12Gc!R22
G

4~d22c!
R2

3

52 1
2 A1GR1cos~b2a!. ~13d!

From Eqs.~13a! and ~13b!, one obtains a first integralR1
2

5R2
21const. We consider the simplest caseR15R25R,

i.e., we choose const50, and setF5b2a. After subtract-
ing Eq.~13c! from Eq.~13d!, two equations forR andF are

2~d1w!Fx812d12
d2G

2~d2
22c2!

R252A1G cosF,
p

.
i-
of

~d1w!Rx85
1

2
A1GRsinF.

Multiplying R on both sides of the second equation and
noting S[R25uUu25uVu2, we rewrite the above equation
as

2~d1w!Fx812d12
d2G

2~d2
22c2!

S52A1G cosF,

~14a!

~d1w!Sx85A1GSsinF. ~14b!

A first integral of above equations can be found:

E5hS2eS21 f ScosF, ~15!

in which E is an integration constant andh52d1 , e
5d2G/@2(d2

22c2)#, f 5A1G. Whenq is small,h. f .0. So
from Eq.~15! and Eqs.~14a! and~14b!, we get the following
equation forS only:

~d1w!
dS

dx8
5e@~S2a4!~a12S!~a22S!~a32S!#1/2,

~16!

wherea13a45a23a35E/ueu.0, a11a45 1
2 ( f 1h)/ueu,

a21a35 1
2 (h2 f )/ueu, and a1.a2.a3>S.a4.0.

Therefore, we obtain the solution of Eq.~16! in terms of the
Jacobian elliptic function,

R~x2wt!5@S~x2wt!#1/2

5F a12
a12a4

a12a4

a12a3
sn2@cs~x2wt!,r #11G 1/2

,

~17!

where

cs5
ueuA~a12a3!~a22a4!

2~d1w!
, r 5A~a12a2!~a32a4!

~a12a3!~a22a4!
.

We do not display the expression for net phaseb2a, as it is
not needed here. When the background wavew0(x) is given,
the solitary wave described by Eq.~17! is determined by the
modulusr. When r→1, i.e., a25a3, sn2→sech2, it has a
shape of soliton. As the velocityw gets larger,cs becomes
smaller and then the soliton’s width gets larger. Its amp
tude, however, is independent ofw. These properties, due t
the background wave, are different from the usual KdV so
ton.

IV. CONCLUSION AND DISCUSSION

We discuss the gap solitary wave in a KdV system wh
initially a periodic cnoidal wave solution exists. Althoug
the amplitude of the periodic potential is small, it has
influence on the perturbation waves propagating in the s
tem. First, the dispersion relation has been changed tha
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lows for two counterpropagating waves moving relative
the background cnoidal wave. Then the two counter pro
gating waves can be coupled due to the nonlinearity. A
result, gap solitary waves can be formed. Its envelope
function of space and time that has a shape of a cnoidal w
described by Eq.~17!. Our solution is similar to that found in
the discretized KdV equation@8# by applying the formalism
of dispersion equations.

Moreover, an induced gap soliton, combined with t
background cnoidal wavew0(x), forms a new solution of the
KdV system. We notice that in Ref.@7#, A. R. Osborne dis-
cussed the numerical construction of nonlinear wave tr
solutions to the periodic KdV equation. These solutions w
represented by a linear superposition of nonlinear interac
hyperelliptic functions that are the nonlinear oscillati
modes of the equation, and the amplitude of the nonlin
modes are constants of motion for KdV evolution. They co
stitute the basis functions of the expansion. Integrability
the equation is a necessary condition for the approach.
solution of the KdV system represented here in its form
also a linear superposition of two nonlinear waves, i.e.,
normal cnoidal wave and the induced gap solitary wave. B
in contrast to Ref.@7#, in our derivation the two waves ar
not required as constants of motion. So exact integrability
the equation is not a necessary condition, and we may a
e

s.
,

a-
a
a
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e
g

ar
-
f
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s
e
t,

f
ly

the method in other nonintegrable systems as well, to
cover the induced gap solitons.

Here we should stress that the gap solitary wave in
system is supported by and coexists with the usual cno
wave. This is different from the gap soliton found in th
coupled KdV wave system@6# where the usual KdV solitons
are killed by coupling. We would expect the mechanism
vealed in the present work can be very general and it m
play an important role in the complex dynamics of nonline
systems. For instance, as we have mentioned, in a nonli
driven drift wave system@9# a gap solitary wave also coex
ists with the steady wave, and the summation of them is a
a solution of the system. Furthermore, the gap solitary w
may cause a crisis that induces a transition to spatiotemp
chaos@10#. It would be expected that the induced solito
may also play important roles in causing the complex d
namical phenomena of a conservative system.
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