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Induced gap solitons of a Korteweg-de Vries system
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We consider a KdV system where a periodic cnoidal wave is initially excited. It is found that envelope
solitons can be formed by perturbation modes, which build up on the periodic wave and move relative to it.
The mechanism is similar to that of the so-called gap soliton, where the existing cnoidal wave plays the role of
a periodic structurd.S1063-651X98)10912-1

PACS numbes): 03.40.Kf

I. INTRODUCTION of effect it will have on the system. If there is no prerequisite
periodic wave, the linear dispersion of the normal KdV equa-
In recent years nonlinear wave propagation through inhotion tells us that the system allows for a unique propagation
mogeneous media has attracted considerable attefritjgh direction for harmonic perturbation waves. However, the
One of the simplest and physically relevant models of arfituation will be changed when there already exists a peri-
inhomogeneous continuous medium is that with periodicodic solution, e.g., a cnoidal wave. In this case, one can
variations on its parameters. In these systems, a new type §kamine the dispersive relation and find that the system al-
nonlinear excitations, so-called gap solitons, discovered ifows for two counterpropagating waves moving relative to
1987 by Chen and Mil[1], can be built up due to the coop- the existing cnoidal wave. The reason is that the perturbation
eration between two factors: periodicity of the parametergvaves can be scattered by the periodic wave as if the latter is
and nonlinearity of the system. Periodicity of the system pa@ periodic potential. In the present paper we will show that
rameter is induced, for example, by a periodic change of théhe nonlinearity can cause the two counterpropagating waves
linear refractive index in optical waveguide or fibers with ato be coupled and an envelope soliton can be formed. We
Kerr-type nonlinearity. Gap solitons may also exist as localcall it an induced gap soliton in the sense that it is fully
ized structures in nonlinear discrete periodic media, such as@/Pported by the background cnoidal wave and it behaves
diatomic chain[3]. The common feature of gap solitons in just like the gap solitons appearing in a periodic medium.
the models mentioned above is: a wave lying in a gap of the We consider the case in which the amplitude of the back-
linear spectrum will be reflected strongly, but spatially local-ground cnoidal wave is small. The dispersion of our system
ized modes may appear when the nonlinearity is consideredf discussed in Sec. II. In Sec. lll, by using the asymptotic
The more physical explanation for the existence of gap soli€xpansion techniquesee Ref[5]), the induced gap solitons
tons is: periodic variation of the parameter Supp"es a feedare fpund. Fina”y, Sec. IV includes the conclusions and dis-
back mechanisnf4], and then there are two counterpropa- CUsSsIons.
gating waves in the system. When the nonlinearity is
considered, these waves are coupled and nonlinear excitation Il. DISPERSION
can emerge in certain cases. Therefore, the difference be-
tween gap solitons and usual solitons lies in the fact that the

appearance of the former requires periodic variation of the _ B _
parameter. Ot~ P PPx=0, 1)

In a coupled Kort.e\./veg—d_e \(ne(KdV) wave systeni6, where the subscripts,t denote the derivations with respect
there is no prerequisite periodic structure, but the gap soli:

tons can also be found. In fact, the necessary periodic pote fo space and _time variableg, e spec_tively. Itis weII_ known
. : N Yhat this equation has a periodic cnoidal wave solution

tial for one subsystem is provided by the other because of a

weak linear coupling between the two subsystems, which
opens a narrow gap in the linear spectrum. A similar phe-

We consider the KdV equation

@o(Xx—vt)=Asir?(x—vt|p)

nomenon has also been observed in a system with only one * _
equation. For example, in Ref9] with a driven/damped =Ag+ >, A,co§2nG(x—ut)]=Ag+ o,
nonlinear drift wave equation, the gap solitary wave is nu- n=1

merically found to be trapped by a steady wave solution. In (2

this case, the steady wave solution plays the role of a peri-

odic background. In the present work, we analytically dis-where p is the modulus,A=—12q, v=4+4q, gq=p?

cuss such phenomena occurring in a conservative systemy=—12(1-E/K), A,=127?n/[K?sinh(r7K'/K)], K, K’,

here KdV equation as an example. E are the complete elliptic integrals, af w/2K(p). This
As is well known, the KdV equation allows for a periodic solution is periodic and its period iskZp), when p—0,

cnoidal wave solution. Supposing that initially such a cnoidalK (p) — 7/2, K’ —o; whenp—1, K(p) —®, K'— /2. As-

wave already exists, it is then interesting to know what kindsuming that such a periodic soluti@n, has been excited in
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our system, we sap(x,t) = gg(x—vt) + (x,t) and then get
an equation for the perturbation wavye

i Yyxx— (o) x— ip=0.
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a, are considered to be slowly varying inandt or d/dx
~ €, dldt~ e when operating om,, . Substituting the expan-
sion (5) into Eq. (3), we obtain the following equations for

a{™ anda{:
If ¢o—0, the above equation is the KdV system, and its
linear dispersive relation iso=—k*® or w/k=—k?<0. It
tells us that the KdV system allows for a unique propagation
direction, here the negative direction. A finite excitation

gaj"
oX

.
gal")
ot

Ay

—i(d;+Ge)al"— >

a; (iG)

©o(X), however, dramatically changes the dispersion of this —1aral"1*(iG)=0, (6a)
system. Sincepg(Xx—uvt) moves with a velocity, we trans-

form the reference frame o' =x—uvt, t'=t. Then for the (=) (=)

perturbation waves moving relative &g, the latter is felt as day _ 5‘931 +i(d,—Ge)al )+ ﬁa“)(iG)

a periodic potential and will scatter those perturbation waves. at IX ! L 21

As a result, two counter propagation directions are allowed 1 () a(=)7e

for the harmonic waves of. It is those counterpropagating +38; [a; 1°(1G)=0, (6b)

perturbation waves moving relative to the periodic potential

¢o that can form localized structures. These structures arghere 5= —3G2+7p, andd, = —G3+ Go. It is important to
different from the usual KdV solitons, and can be calledngte that in Eqs(6a) and (6b) nonlinear parts also involve

induced gap solitons as explained in the following.

Omitting the prime”’” in the reference framex(, t'),
one obtains

= ’pxxx_; Uy— ("; b)x— pib=0, ©)

wherev=v+A,. First let us look for the nonlinear disper-
sion caused by the periodic potentigh(x). For this pur-
pose, one sets the nonlinear term to zero, and expa(ds)
into (x,t)=3,fdwu(k,w)e'(“"k)  nserting it into Eq.
(3) brings us the following equation:

o

u(k,w)(w+k3—vk)— > LfAk

n=0

X[u(k+2nG,w)+tu(k—2nG,w)]=0, (4)

wherek=1, 2, ...,%. The condition that the Jacobian de-

terminant of the above equations equals zero gives the dis-

persive relation of(x,t). Obviously, the system dispersion
is significantly influenced by the cnoidal wawg(x). The
most important effect is that(k, ») is allowed to propagate
in both directions.

We consider the case in whidahpis small, i.e.,q~e, €
being a small parameter. When=p? is small, E— /2,
K—m/2, K' is very large. SoG~¢€% |Agl~e, A,
—exd —(7K'/K)]~¢, and A,—exd—(27K'/K)]~€. For

the amplitudes of the second harmonic, which after substitu-
tion are reduced in the lower order efto the simple alge-
braic relations

(+)72
a—_
2 T3y *

[a} ]2
- 2(d,—c)’

@)

where d,=—4G?+7v. Using Egs.(7), Egs. (6a) and (6b)
change to

ﬁ"";lt”_ ﬁz—;ﬂ—i(dﬁGC)aY)_%a&_)(iG)
gl e e -0, (89
_%—_C)|a(1‘)|2[a(l‘)](i6)=0. (8b)

If the last nonlinear dispersive terms are neglected, nonzero
solutions ofa{™ anda{™ require

simplicity, we only consider the case where the wave num-

bers of the harmonics af equal halves of those of periodic
potential ¢q, i.e.,NG. So we expand the wave field into
two counter propagating modes. That is

P(x,t)= ; En[ag-%—)(xyt)emG(x—ct)-{- ag_)(xlt)e—mG(m—ct)]

+c.c.,

©)

c=[(d,/G)?— A2/4]*2, (9)

This gives the dispersive relation when initially a cnoidal
wave exists. This dispersion can also be obtained from Eqg.
(4) by omitting the second and higher Fourier component of
¢o(X). WhenA;—0, the linear dispersion of KdV equation
is recovered. IfA; is nonzero, those harmonic waves whose
velocitiesc do not satisfy the relatio9) are forbidden by

wherea") represents the amplitude of the forward-movingthe system. This dispersion produces a gap in the spectrum.
mode along the positivex direction, andal™) is the However, one can see in the next section that the nonlinear-
backward-moving modes whex>0. c.c. stands for complex ity causes the modes to be coupled to form localized struc-
conjugation ande is the small parameter. We assume thetures. From this point of view, these localized structures can
slowly varying envelope approximation; i.e., the amplitudesalso be called gap solitons.
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IIl. INDUCED GAP SOLITONS

To look for solutions of nonlinear equatiofa) and(8b),
we consider the envelopes ), a{~) propagating with a
velocity w:

al”(x,t)=U(x—wt), al”)(x,t)=V(x—wt). (10
After transforming to the moving coordinates =x—wt,
t'=t, and inserting Eq(10) into Egs. (83 and (8b), we
obtain the following set of ordinary differential equations:

A
|U|2U=i71GV,

(11a

. iG
—(6+wW)U, —i(d;+Gec)U+ m

S+W)Vy +i(d;—Ge)V G VIPv=—i gy
(8+W)V, +i(d;—Gc) m“—'? :
(11b)

U,V are both complex functions. In the case of0,
Eq. (11b is conjugate to Eg.(11a. Now we assume
U=u+iv, V=u—iv; then the equations fou, v are the

same as those describing the optical bright and dark gap

solitons in a diffractivey(?) medium[5] with periodic varia-

tion of refractive index. So the details are not listed here.
However, the physics is different. In our case, the gap soli-
tons are induced, supported by the normal cnoidal wave of

the KdV equation.
In the general case far+0, we set

V(X")=Ra(x")exfiB(x")],
12

U(x")=Ry(x")exdia(x")],

whereR;, R,, «, andg are real functions. Exponential fac-

tors in Eq.(12) and expinG(x—ct)] in Eq. (5) constitute the
high-frequency part off(x). Ry(x"), Ry(x") represent the
envelopes of/(x). Substituting Eq(12) into Egs.(119 and
(11b), one gets four coupled equations ®y, R,, «, andg
as follows:

(8+W)Ryx = 3AGR,SIN B~ ), (133
(8+W)Ry =3A,GR;SIN(B— a), (13b)
—(8+W)Ryay —(d;+Ge)Ry + mRi
=1A,GR,coqB—a), (139
—(5+W)R2er + (dl_ GC)RZ— ng
:_%AlGRlcoiﬁ_a’). (13d)

From Egs.(139 and (13b), one obtains a first integraRf
=R§+ const. We consider the simplest caBe=R,=R,
i.e., we choose const0, and setd = 3— «. After subtract-
ing Eq. (130 from Eq.(130), two equations foR and® are

d,G

—(6+w)d,,+2d;,— ———R

2= —A,;Gcosd,
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1
(5+W)RX,=§A1GRsin<I>.

Multiplying R on both sides of the second equation and de-
noting S=R?=|U|%=|V|?, we rewrite the above equations
as

(5+w)d,, +2d 96 o AGcosd
- w)D,, ————FS=- cos®d,
(14a
(6+w)S, =A,;GSsind. (14b)
A first integral of above equations can be found:
E=hS—-eS+fScosb, (15)

in which E is an integration constant and=2d,, e
=d,G/[2(d5—c?)], f=A,G. Whenq s small,h>f>0. So
from Eq.(15) and Eqs(14a and(14b), we get the following
equation forSonly:

ds
(5+w) - =el(S- a4)(al—S)(a2—-S)(a3-9)]"2
X
(16)

wherealxa4=a2xa3=E/|e|>0, al+ad=3(f+h)/|e|,

a2+a3=3(h—"f)/le], and al>a2>a3=S>a4>0.

Therefore, we obtain the solution of Ed.6) in terms of the
Jacobian elliptic function,

R(x—wt)=[S(x—wt)]*?

al—a4 12

_al—a4rF . ’
ms [co(x—wt),r]+

=|al

17

where

_lelV(al-a3)(a2—a4) _\/(al—aZ)(aS—a4)
Cs= 2(5+w)  "“N(a1-a3)(a2—ad)’

We do not display the expression for net phgsea, as itis
not needed here. When the background waygx) is given,
the solitary wave described by E@{.7) is determined by the
modulusr. Whenr—1, i.e.,a2=a3, srf—sech, it has a
shape of soliton. As the velocity gets largercs becomes
smaller and then the soliton’s width gets larger. Its ampli-
tude, however, is independentwf These properties, due to
the background wave, are different from the usual KdV soli-
ton.

IV. CONCLUSION AND DISCUSSION

We discuss the gap solitary wave in a KdV system where
initially a periodic cnoidal wave solution exists. Although
the amplitude of the periodic potential is small, it has an
influence on the perturbation waves propagating in the sys-
tem. First, the dispersion relation has been changed that al-
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lows for two counterpropagating waves moving relative tothe method in other nonintegrable systems as well, to dis-
the background cnoidal wave. Then the two counter propaeover the induced gap solitons.
gating waves can be coupled due to the nonlinearity. As a Here we should stress that the gap solitary wave in our
result, gap solitary waves can be formed. Its envelope is aystem is supported by and coexists with the usual cnoidal
function of space and time that has a shape of a cnoidal waweave. This is different from the gap soliton found in the
described by Eq.17). Our solution is similar to that found in  coupled KdV wave syster6] where the usual KdV solitons
the discretized KdV equatiof8] by applying the formalism are killed by coupling. We would expect the mechanism re-
of dispersion equations. vealed in the present work can be very general and it may
Moreover, an induced gap soliton, combined with theplay an important role in the complex dynamics of nonlinear
background cnoidal wavey(x), forms a new solution of the systems. For instance, as we have mentioned, in a nonlinear
KdV system. We notice that in Reff7], A. R. Osborne dis- driven drift wave systeni9] a gap solitary wave also coex-
cussed the numerical construction of nonlinear wave trainists with the steady wave, and the summation of them is also
solutions to the periodic KdV equation. These solutions were solution of the system. Furthermore, the gap solitary wave
represented by a linear superposition of nonlinear interactingnay cause a crisis that induces a transition to spatiotemporal
hyperelliptic functions that are the nonlinear oscillation chaos[10]. It would be expected that the induced solitons
modes of the equation, and the amplitude of the nonlineamay also play important roles in causing the complex dy-
modes are constants of motion for KdV evolution. They con-namical phenomena of a conservative system.
stitute the basis functions of the expansion. Integrability of
the e_quation is a necessary condition for the a_lpp_roach. Qur ACKNOWLEDGMENTS
solution of the KdV system represented here in its form is
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